PAVOL JOZEF ŠAFÁRIK UNIVERSITY IN KOŠICE Faculty of Science

INSTITUTE OF MATHEMATICS

The first sketch: ${\cal N}$ with respect to ideals on ω

Viera Šottová

joint work with Diego A. Mejía

Hejnice 2019

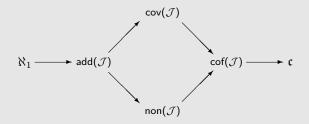
- The family $\mathcal{J} \subseteq \mathcal{P}(\omega)$ is called **ideal** on ω , if
 - it is closed under taking subsets and finite unions
 - does not contain the set ω , but contains all finite subsets of ω .
- Examples:
 - the Frechét ideal, denoted as Fin, is a set $[\omega]^{<\aleph_0}$,
 - \mathcal{Z} is an asymptotic density zero ideal,
 - nwd is nowhere dense ideal.

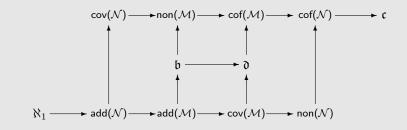
• The family $\mathcal{J} \subseteq \mathcal{P}(\omega)$ is called **ideal** on ω , if

- it is closed under taking subsets and finite unions
- does not contain the set ω , but contains all finite subsets of ω .
- Examples:
 - the Frechét ideal, denoted as Fin, is a set $[\omega]^{<\aleph_0}$,
 - \mathcal{Z} is an asymptotic density zero ideal,
 - nwd is nowhere dense ideal.
- Ideal $\mathcal J$ a is σ -ideal if it is an ideal closed under σ unions.
 - ideal of meager sets \mathcal{M} ,
 - ideal of Lebesgue measure zero sets \mathcal{N} .
- Note: such ideals are usually defined on \mathbb{R} .

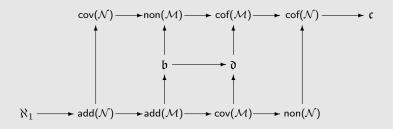
Basic notions

- For any ideal ${\mathcal J}$ we can consider cardinal invariants
 - $\operatorname{add}(\mathcal{J}) = \{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{J} \And \bigcup \mathcal{A} \notin \mathcal{J} \},\$
 - $\operatorname{cov}(\mathcal{J}) = \{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{J} \& \bigcup \mathcal{A} = X \},\$
 - $\operatorname{non}(\mathcal{J}) = \{ |Y| : Y \subseteq X \& Y \notin \mathcal{J} \},\$
 - $\operatorname{cof}(\mathcal{J}) = \{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{J} \& (\forall B \in \mathcal{J}) (\exists A \in \mathcal{A}) B \subseteq A \}.$
- For a σ -ideal ${\mathcal J}$

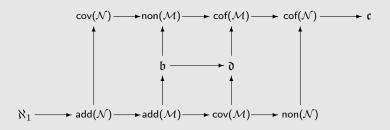




• $\operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}\ \text{ and }\ \operatorname{cof}(\mathcal{M}) = \max\{\operatorname{non}(\mathcal{M}), \mathfrak{d}\}.$



- $\operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}\ \text{ and }\ \operatorname{cof}(\mathcal{M}) = \max\{\operatorname{non}(\mathcal{M}), \mathfrak{d}\}.$
- b is a bounding number,
- ϑ is a dominating number.



- $\operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}\ \text{ and }\ \operatorname{cof}(\mathcal{M}) = \max\{\operatorname{non}(\mathcal{M}), \mathfrak{d}\}.$
- b is a bounding number,
- *d* is a dominating number.
- They both can be redefined via ideals on ω i.e., $\mathfrak{b}_{\mathcal{J}}$ and $\mathfrak{d}_{\mathcal{J}}$.

• Let \bar{c} be a sequence $\langle c_n : n \in \omega \rangle$.

- Let \bar{c} be a sequence $\langle c_n : n \in \omega \rangle$.
- Let μ be a Lebesgue measure.

- Let \bar{c} be a sequence $\langle c_n : n \in \omega \rangle$.
- Let μ be a Lebesgue measure.
- Let Ω = {c ⊆ 2^ω : c is a clopen set}.

- Let \bar{c} be a sequence $\langle c_n : n \in \omega \rangle$.
- Let μ be a Lebesgue measure.
- Let $\Omega = \{ c \subseteq 2^{\omega} : c \text{ is a clopen set} \}.$
- Consider

$$\Omega^* = \left\{ c \in \Omega^{\omega} : (\forall n \in \omega) \ \mu(c_n) \le 2^{-n} \right\}.$$

- Let \bar{c} be a sequence $\langle c_n : n \in \omega \rangle$.
- Let μ be a Lebesgue measure.
- Let $\Omega = \{ c \subseteq 2^{\omega} : c \text{ is a clopen set} \}.$
- Consider

$$\Omega^* = \left\{ c \in \Omega^{\omega} : \ (\forall n \in \omega) \ \mu(c_n) \le 2^{-n} \right\}.$$

By T. Bartoszyński:

Let $X \subseteq 2^{\omega}$. Then $X \in \mathcal{N} \iff (\exists \bar{c} \in \Omega^*) \ X \subseteq N(\bar{c})$ where $N(\bar{c}) = \{x \in 2^{\omega} : | \{n \in \omega : x \in c_n\} | = \aleph_0 \}.$

• Moreover,
$$N(\overline{c}) = \bigcap_{n < \omega} \bigcup_{m \ge n} c_m.$$

Consider a set

$$\Omega^{**} = \left\{ \overline{c}: \ (\forall n \in \omega) \ c_n \text{ is open and } \sum_{n < \omega} \mu(c_n) < \infty \right\}.$$

Consider a set

$$\Omega^{**} = \left\{ \overline{c}: \ (\forall n \in \omega) \ c_n \text{ is open and } \sum_{n < \omega} \mu(c_n) < \infty \right\}.$$

- Define following sets for an ideal $\mathcal J$ on ω and for each $\bar c \in \Omega^{**}$

$$N_{\mathcal{J}}(\bar{c}) = \left\{ x \in 2^{\omega} : \left\{ n \in \omega : x \in c_n \right\} \in \mathcal{J}^+ \right\}.$$

Consider a set

$$\Omega^{**} = \left\{ \overline{c}: \ (\forall n \in \omega) \ c_n \text{ is open and } \sum_{n < \omega} \mu(c_n) < \infty \right\}.$$

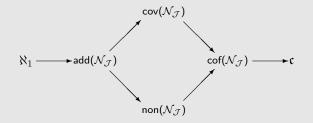
- Define following sets for an ideal ${\mathcal J}$ on ω and for each $\bar c\in \Omega^{**}$

$$N_{\mathcal{J}}(\bar{c}) = \left\{ x \in 2^{\omega} : \left\{ n \in \omega : x \in c_n \right\} \in \mathcal{J}^+ \right\}.$$

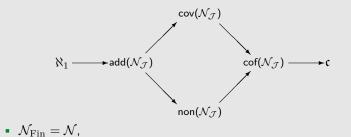
Then

$$\mathcal{N}_{\mathcal{J}} = \{ X \subseteq 2^{\omega} : (\exists \bar{c} \in \Omega^{**}) \ X \subseteq N_{\mathcal{J}}(\bar{c}) \} .$$

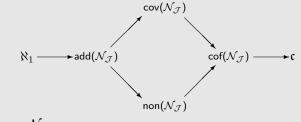
• $\mathcal{N}_{\mathcal{J}}$ is a σ -ideal for any ideal \mathcal{J} on ω ,



• $\mathcal{N}_{\mathcal{J}}$ is a σ -ideal for any ideal \mathcal{J} on ω ,

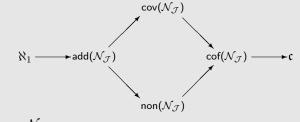


• $\mathcal{N}_{\mathcal{J}}$ is a σ -ideal for any ideal \mathcal{J} on ω ,



- $\mathcal{N}_{\mathrm{Fin}} = \mathcal{N}$,
- $\mathcal{N}_{\mathcal{J}} \subseteq \mathcal{N}$ for any ideal \mathcal{J} on ω .

• $\mathcal{N}_{\mathcal{J}}$ is a σ -ideal for any ideal \mathcal{J} on ω ,



•
$$\mathcal{N}_{\mathrm{Fin}} = \mathcal{N}$$
,

• $\mathcal{N}_{\mathcal{J}} \subseteq \mathcal{N}$ for any ideal \mathcal{J} on ω .

Observation

Let \mathcal{J} be an ideal on ω which has the Baire property^a. Then $\mathcal{N} = \mathcal{N}_{\mathcal{J}}$.

 ${}^{a}\mathcal{J}$ has Baire property if and only if \mathcal{J} is meager if and only if $\operatorname{Fin} \leq_{RB} \mathcal{J}$.

Proposition (D. A. Mejía, V. Š.)

Let \mathcal{J} be an arbitrary ideal on ω . Then

- $\operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{N}_{\mathcal{J}})$,
- $\operatorname{cof}(\mathcal{N}_{\mathcal{J}}) \leq \operatorname{cof}(\mathcal{N}).$

Proposition (D. A. Mejía, V. Š.)

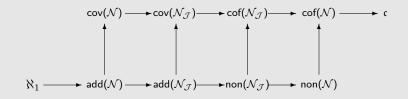
Let \mathcal{J} be an arbitrary ideal on ω . Then

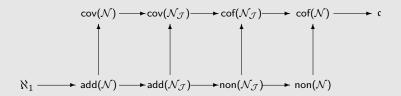
- $\operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{N}_{\mathcal{J}})$,
- $\operatorname{cof}(\mathcal{N}_{\mathcal{J}}) \leq \operatorname{cof}(\mathcal{N}).$
- Note that if $\mathcal{I} \subseteq \mathcal{J}$ then $cov(\mathcal{I}) \leq cov(\mathcal{J})$ and $non(\mathcal{J}) \leq non(\mathcal{I})$.

Proposition (D. A. Mejía, V. Š.)

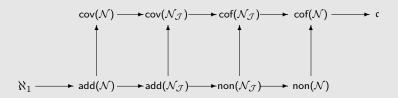
Let \mathcal{J} be an arbitrary ideal on ω . Then

- $\operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{N}_{\mathcal{J}})$,
- $\operatorname{cof}(\mathcal{N}_{\mathcal{J}}) \leq \operatorname{cof}(\mathcal{N}).$
- Note that if $\mathcal{I} \subseteq \mathcal{J}$ then $cov(\mathcal{I}) \leq cov(\mathcal{J})$ and $non(\mathcal{J}) \leq non(\mathcal{I})$.





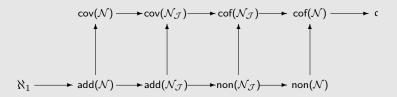
• The consistency of $cov(\mathcal{N}) < non(\mathcal{N}) \Rightarrow$ the consistency of $cov(\mathcal{N}_{\mathcal{J}}) < non(\mathcal{N}_{\mathcal{J}})$.



• The consistency of $cov(\mathcal{N}) < non(\mathcal{N}) \Rightarrow$ the consistency of $cov(\mathcal{N}_{\mathcal{J}}) < non(\mathcal{N}_{\mathcal{J}})$.

Questions

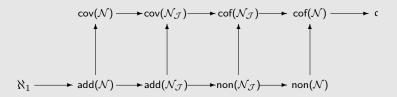
• Is $non(\mathcal{N}_{\mathcal{J}}) < cov(\mathcal{N}_{\mathcal{J}})$ consistent in **ZFC**?



• The consistency of $\operatorname{cov}(\mathcal{N}) < \operatorname{non}(\mathcal{N}) \Rightarrow$ the consistency of $\operatorname{cov}(\mathcal{N}_{\mathcal{J}}) < \operatorname{non}(\mathcal{N}_{\mathcal{J}})$.

Questions

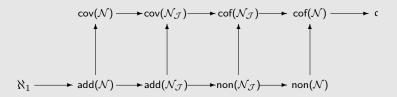
- Is $non(\mathcal{N}_{\mathcal{J}}) < cov(\mathcal{N}_{\mathcal{J}})$ consistent in **ZFC**?
- Is $non(\mathcal{M}) < cov(\mathcal{N}_{\mathcal{J}})$ consistent in **ZFC**?



• The consistency of $cov(\mathcal{N}) < non(\mathcal{N}) \Rightarrow$ the consistency of $cov(\mathcal{N}_{\mathcal{J}}) < non(\mathcal{N}_{\mathcal{J}})$.

Questions

- Is $non(\mathcal{N}_{\mathcal{J}}) < cov(\mathcal{N}_{\mathcal{J}})$ consistent in **ZFC**?
- Is $non(\mathcal{M}) < cov(\mathcal{N}_{\mathcal{J}})$ consistent in **ZFC**?
 - If $Z \in \mathcal{N}_{\mathcal{J}}$ and $x \in 2^{\omega}$ then $x + Z \in \mathcal{N}_{\mathcal{J}}$.



• The consistency of $cov(\mathcal{N}) < non(\mathcal{N}) \Rightarrow$ the consistency of $cov(\mathcal{N}_{\mathcal{J}}) < non(\mathcal{N}_{\mathcal{J}})$.

Questions

- Is $non(\mathcal{N}_{\mathcal{J}}) < cov(\mathcal{N}_{\mathcal{J}})$ consistent in **ZFC**?
- Is $non(\mathcal{M}) < cov(\mathcal{N}_{\mathcal{J}})$ consistent in **ZFC**?
 - If $Z \in \mathcal{N}_{\mathcal{J}}$ and $x \in 2^{\omega}$ then $x + Z \in \mathcal{N}_{\mathcal{J}}$.
 - Is there $Z \in \mathcal{N}_{\mathcal{J}}$ such that $(2^{\omega} \setminus Z) \in \mathcal{M}$?

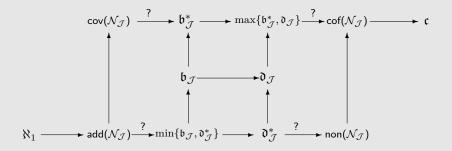
 \blacksquare change of topology via ideals on ω with respect to the Baire category theorem.

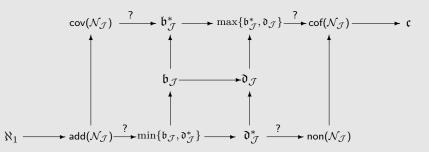
- \blacksquare change of topology via ideals on ω with respect to the Baire category theorem.
- ${\it 2}$ focus on the combinatorial characterization of cardinal invariants of ${\cal M}.$

- \blacksquare change of topology via ideals on ω with respect to the Baire category theorem.
- ${\it 2}$ focus on the combinatorial characterization of cardinal invariants of ${\cal M}.$
- by T. Bartoszyński
 - $\operatorname{non}(\mathcal{M}) = \mathfrak{b}_{\operatorname{Fin}}^* = \min \{ |F| : F \subset \omega^{\omega}, \neg (\exists y \in \omega^{\omega}) (\forall x \in F) x \neq^* y \},\$

• $\operatorname{cov}(\mathcal{M}) = \mathfrak{d}_{\operatorname{Fin}}^* = \min \{ |D| : D \subset \omega^{\omega}, (\forall x \in \omega^{\omega}) (\exists y \in D) x \neq^* y \},\$ where $x \neq^* y$ iff $\{n : x(n) = y(n)\} \in \operatorname{Fin}.$

• we define $\mathfrak{b}_{\mathcal{J}}^*$ and $\mathfrak{d}_{\mathcal{J}}^*$ in a case if $\{n: x(n) = y(n)\} \in \mathcal{J}$.





Observation

If $\mathcal J$ has the Baire property, then $\mathfrak{b}^*_{\mathcal J} = \mathfrak{b}^*_{\mathrm{Fin}}$ and $\mathfrak{d}^*_{\mathcal J} = \mathfrak{d}^*_{\mathrm{Fin}}$.

Thank you for your attention

viera.sottova@student.upjs.sk